MATHEMATICS

Chapter 11 is the last chapter of this Grade 12 mathematics. Application of integration such as the area under the curve and volume integral is illustrated.

Chapter 11

11.1 Introduction

We have seen the integration of functions such as polynomial, rational, exponential, logarithmic and trigonometric functions. We shall now apply these in:

  • finding the area under the curve and x-axis,
  • finding the area between two curves,
  • finding the volume of solid.
The students havce already studied how to find the area and voloume of a rectangle, triangle, trapezoid, circle, etc. For example, we use the respective formula to find the areas of rectangle, trapezoid and circle as follows:
b h Area = b × x
h a Area = ½h × (b × b) b
r area = π r² O
These are simple calculations but not enough when we need to find the area or volume having a complicated frame. Therefore we consider the finite integral to find area or volume of the region.

11.2 Definite Integral

If F ' (x) = f(x) when f(x) is continuous on the interval axb, then the definite integral of f(x) on [a, b] is defined by

$$\int_a^b f(x)\,dx = F(b) - F(a)$$

where the number a and b are called the limits of integration. Here a is the lower limit and b is the upper limit.

$$\int_a^b f(x) \,dx \, \, \text{reads}$$ "the integral from x = a to x = b of f(x) with respect to x".
We write
$$F(b) - F(a) = F(x)\bigg]_a^b \, \, \text{or\,}\, \bigg[F(x)\bigg]_a^b$$ depending on whether F has one or more terms.
As an example, consider
$$\int_a^b x^3\, dx.$$ We can compute that $$\int_a^b x^3\,dx = \bigg[\frac{x^4}{4} + C\bigg]_a^b$$ $$=\left( \frac{b^4}{4}+C\right) - \left(\frac{a^4}{4}+C\right) = \frac{b^4}{4}-\frac{a^4}{4}.$$ The constant of integration C cancles out in the subtraction, so we omit it from the calculation. Thus, $$\int_a^b x^3\,dx = \frac{x^4}{4}\bigg]_a^b = \frac{b^4}{4}-\frac{a^4}{4}.$$
The Fundamental Theorem of Calculus
1. Let f be continuous on [a, b]. Then for each x ∈ [a, b],
$$\frac{d}{dx} \int_a^x f(t)\,dt = f(x).$$
2. Let F ' be continuous on [a, b]. Then for each x ∈ [a, b],
$$\int_a^x F'(t)\, dt = F(x) - F(a).$$

Rules for Definite Integration
Suppose f and g are continuous on [a, b] and k ∈ ℝ.
$$1.\, \, \int_a^b k\, f(x)\,dx = k\, \int_a^b f(x)\,dx.$$ $$2.\, \, \int_a^b [f(x)\pm g(x)]\,dx = \int_a^b \, f(x)\,dx \pm \int_a^b\,g(x)\,dx.$$ $$3. \int_a^b \, f(x)\,dx = 0.$$ $$4. \int_a^b\, f(x)\,dx = - \int_b^a\, f(x)\,dx.$$ $$5. \int_a^b\, f(x)\,dx = \int_a^c \,f(x)\,dx + \int_c^b\, f(x)\,dx \,\,\,\text{where\,} c \isin (a,b).$$
Example 1.
Evaluate the following definite integrals.
$$\text{(a)\,}\, \int_{-1}^2 x^3\,dx$$ $$\text{(b)\,\,} \int_0^{\frac{\pi}{2}}\, sin\,x\,dx$$ $$\text{(c)\,}\, \int_{-1}^1\,\sqrt{x+2}\,dx$$ $$\text{(d)}\,\, \int_{\frac{\pi}{4}}^{\pi}\, |cos\, x|\, dx$$ Solution
$$\text{(a)\,}\, \int_{-1}^2 x^3\,dx$$ $$=\frac{x^4}{4}\bigg]_{-1}^2$$ $$= \frac{2^4}{4} - \frac{(-1)^4}{4}$$ $$= 3\frac{3}{4}.$$

$$\text{(b)\,\,} \int_a^{\frac{\pi}{2}}\, sin\,x\,dx$$ $$=-cos\,x\bigg]_0^{\frac{\pi}{2}}$$ $$= - cos \frac{\pi}{2} + cos\, 0$$ $$= -0+1 = 1.$$

$$\text{(c)\,}\, \int_{-1}^1\,\sqrt{x+2}\,dx$$ $$= \int_{-1}^1\, (x+2)^{\frac{1}{2}}\, dx$$ $$= \frac{2}{3} (x+2)^{\frac{1}{2}}\bigg]_{-1}^1$$ $$= \frac{2}{3} \left((3)^{\frac{3}{2}}-(1)^{\frac{3}{2}}\right)$$ $$= \frac{2}{3} (3\sqrt3-1).$$

$$\text{(d)}\,\, \int_{\frac{\pi}{4}}^{\pi}\, |cos\, x|\, dx$$ $$\text{When\,}\, \frac{\pi}{4} \le x \le \frac{\pi}{2},\, |cos\,x| = cos\,x.$$ $$\text{When\,}\, \frac{\pi}{2} \le x \le \pi,\, |cos\,x| = -cos\,x.$$ $$\int_{\frac{\pi}{4}}^{\pi}\, |cos\,x|\,dx=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\, cos\,x\,dx+ \int_{\frac{\pi}{2}}^{\pi}\,(-cos\,x)\,dx$$ $$=sin\,x\bigg]_{\frac{\pi}{4}}^{\frac{\pi}{2}}\, - sin\,x \bigg]_{\frac{\pi}{2}}^{\pi}$$ $$= (sin\frac{\pi}{2}-sin\frac{\pi}{4})-(sin\,\pi - sin\frac{\pi}{2})$$ $$=2-\frac{\sqrt2}{2}.$$
fig 11.1-3


Example 2.
Evaluate the integral $$\int_1^2\,x\, \sqrt{2-x}\, dx.$$ Solution
Method 1
$$\int_1^2\,x\, \sqrt{2-x}\, dx$$ Let u = 2 - x. Then du = -dx.
$$\int x\,\sqrt{2 - x}\,dx= - \int (2-u)\, \sqrt u\,du$$ $$= - \int(2u^{\frac{1}{2}}-u^{\frac{3}{2}}) du$$ $$=-\frac{4}{3} u^{\frac{3}{2}}+\frac{2}{5}u^{\frac{5}{2}}$$ $$=-\frac{4}{3}(2-x)^{\frac{3}{2}} + \frac{2}{5}(2-x)^{\frac{5}{2}}.$$ Next $$\int_1^2\,x \sqrt{2-x}\,dx = \bigg[ -\frac{4}{3}(2-x)^{\frac{3}{2}}+\frac{2}{5}(2-x)^{\frac{5}{2}}\bigg]_1^2 $$ $$= 0 - (-\frac{4}{3}+\frac{2}{5})=\frac{14}{15}.$$
Method 2
Let u = 2 - x. Then du = -dx.
Changing the variable from x to u, we get
x 1 → 2
u 1 → 0

$$\int_1^2\,x\sqrt{2-x}\,dx = - \int_1^0\, (2u^{\frac{1}{2}} - u^{\frac{3}{2}})du$$ $$= \int_0^1\, (2u^{\frac{1}{2}}-u^{\frac{3}{2}})du$$ $$= \bigg[\frac{4}{3}u^{\frac{3}{2}}-\frac{2}{5}u^{\frac{5}{2}}\bigg]_0^1 $$ $$= \frac{14}{15}.$$

Exercise 11.1

  1. Evaluate the following definite integrals.

  2. $$\text{(a)\,}\, \int_0^1 \frac{e^x}{e^x+1}\,dx$$ $$\text{(b)}\,\, \int_1^1\,x\sqrt{x+2}\,dx$$ $$\text{(c)}\, \, \int_0^6 \, (\frac{1}{3}x-1)^3\,dx$$ $$\text{(d)}\, \, \int_2^4\, \frac{x+5}{x^2-6x+5}\,dx$$ $$\text{(e)}\, \, \int_0^2\, e^{-x}\, cos\, 2x\,dx$$ $$\text{(f)}\, \, \int_{\frac{\pi}{8}}^{\frac{\pi}{6}}\, tan\, 2x\, dx$$

  3. Find the integral of
  4. $$\int_0^{2\pi}\, cos\, mx\,sin\,nx\,dx$$ for (a) m = n and (b) mn.

  5. Evaluate the following integrals.

  6. $$\text{(a)}\, \, \int_0^4\, |\sqrt{2x} - 2|\, dx$$ $$\text{(b)}\,\, \int_{-1}^1 \, |e^x-1|\,dx$$ $$\text{(c)}\, \, \int_0^{2\pi}\,|sin\,x|\,dx$$

11.3 Area between the Curve and x-axis

In this section, we discuss the area between the curve and x-axis using the definite integral. If f(x) is positive and continuous on the closed interval axb, then the area bounded by y = f(x), the x-axis and the vertical line x = a and x = b is given by
$$\int_a^b\,f(x)\,dx.$$ Let us begin with the area enclosed between the graph and x-axis.

Example 3.
Find the area enclosed between the graph of
$$\text{(a)\, \,} f(x) = 3 \, \text{and\,the}\, x\text{-axis\,over\,} [1, 4],$$ $$\text{(b)\,\,} f(x) = 3x+2 \, \text{and\,the\,}x\text{-axis\,over\,}[-\frac{2}{3}, 0].$$ $$\text{(c)\,\,} f(x) = -x^2 + 4\, \text{and\, the\,}x\text{-axis\,over}\, [-2, 2].$$ Solution
$$\text{(a)\,\,}\, \int_1^4 \, 3\,dx = 3x\bigg]_1^4$$ $$=12 - 3 = 9 \,\text{unit}^2.$$

fig 11.2-1


$$\text{(b)\,\,}\, \int_{-\frac{2}{3}}^0 \, (3x+2)\, dx = \bigg[ 3\frac{x^2}{2} + 2x\bigg]_{-\frac{2}{3}}^0$$ $$=0-\frac{3}{2}\left(-\frac{2}{3}\right)^2 - 2\left(-\frac{2}{3}\right)$$ $$=\frac{2}{3}\, \text{unit}^2.$$
fig 11.2-2


$$\text{(c)\,}\, \int_{-2}^2\,(4-x^2)\,dx = \bigg[4x-\frac{x^3}{3}\bigg]_{-2}^2$$ $$= \left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right)$$ $$= 10\frac{2}{3}\, \text{unit}^2.$$
fig 11.2-3


Example 4.
(a) Compute the definite integral $$\int_0^{\frac{5}{2}}\, (x^2 - 2x)\,dx.$$
(b) Find the total area enclosed between the graph of f(x) = x2 - 2x and the x-axis over [0, 52].
Solution
$$\text{(a)\,\,\,}\int_0^{\frac{5}{2}}\, (x^2 - 2x)\,dx.$$ $$= \bigg[\frac{x^3}{3} - x^2\bigg]_0^{\frac{5}{2}}$$ $$= \frac{1}{3}\left(\frac{5}{2}\right)^3 - \left(\frac{5}{2}\right)^2$$ $$= -1 \frac{1}{24}.$$
fig 11.2-4


(b) For the intersection point of x-axis and the curve, f(x) = 0
$$x^2-2x=0$$ $$x(x-2)=0$$ $$x=0, 2.$$ Thus the graph of f(x) cuts x-axis at 0 and 2, we devide the domain in two intervals:
the interval [0, 2] and the interval [2, 5 2].
$$\int_0^2\, (x^2-2x)\,dx= \bigg[\frac{x^3}{3}-x^2\bigg]_0^2$$ $$=\left(\frac{8}{3}-4\right)-0=-\frac{4}{3}.$$ On [0, 2], the function f ≤ 0, so the value of integration f gives negative. $$\int_2^{\frac{5}{2}}\, (x^2-2x)\, dx = \bigg[\frac{x^3}{3}-x^2\bigg]_2^{\frac{5}{2}}$$ $$= \left(\frac{125}{24}-\frac{25}{4}\right)-\left(\frac{8}{3}-4\right)$$ $$=\frac{7}{24}.$$ On [2, 52], the function f ≥ 0, so the value of integration f gives positive.
Therefore, $$\text{Area}\, = |-\frac{4}{3}| + |\frac{7}{24}| = 1\frac{5}{8}\, \text{unit}^2.$$

Example 5.
Figure shows the graph of the function f(x) = cos x.
fig 11.2-5

Find the area enclosed between the graph of f(x) = cos x and the lines $$\text{(a)\,}\, x=0 \, \text{and\,} x= \frac{\pi}{2}$$ $$\text{(b)\,} \, x=\frac{\pi}{2}\, \text{and\,} x=\frac{3\pi}{2}$$ $$\text{(c)\,}\, x=0\, \text{and}\, x=\frac{3\pi}{2}.$$ $$\text{(d)\, \, Find\,the\,definite\,integral}\,\, \int_0^{\frac{3\pi}{2}} \, \text{cos\,}x\,dx.$$
Solution
$$\text{(a)\,}\, \,\int_0^{\frac{\pi}{2}}\, \text{cos\,} x\,dx = \text{sin}\,\biggl]_0^{\frac{\pi}{2}}$$ $$= sin \frac{\pi}{2} - sin 0 = 1.$$ $$\text{Area\,}= 1\, \text{unit}^2.$$
$$\text{(b)\, \,} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}\, cos\,x\,dx= sin\, x\bigg]_{\frac{\pi}{2}}^{\frac{3\pi}{2}}$$ $$= sin \, \frac{3\pi}{2} - sin \frac{\pi}{2} = -2$$ $$\text{Area}\, = |-2| = 2\, \text{unit}^2.$$

$$\text{(c)\, \, Area\, between\, the\, graph\,} f(x)=cos\,x$$ $$\text{and\, the\, lines\,}x=0\,\text{and\,}$$ $$x=\frac{3\pi}{2}\, \text{is\,} 3\,\text{unit}^2.$$

$$\text{(d)\, \,}\, \int_0^{\frac{3\pi}{2}} \, cos\, x\,dx= sin\,x \bigg]_0^{\frac{3\pi}{2}}$$ $$= sin\frac{3\pi}{2} - sin\, 0=-1.$$

To find the area between the graph of y = f(x) and x-axis over the interval [a, b]:
Step 1 Find the intersection point(s) of the graph y = f(x) and the x-axis.
Step 2 Divide the interval [a, b] at the zeros of f.
Step 3 Integrate f over each subinterval.
Step 4 Add the absolute value of the integrals.

Example 6.

fig 11.2-6

The shaded area is 16 unit2. Find the value of k.
Solution
$$\int_0^4\, k\sqrt x\,dx = \frac{2k}{3}x^{\frac{3}{2}}\bigg]_0^4$$ $$= \frac{2k}{3} \sdot 4^{\frac{3}{2}} = \frac{16k}{3}.$$ By the problem, $$\frac{16k}{3} = 16,\, \, \text{so}$$ $$k=3.$$

11.4 Area between Two Curves

In this section we consider the areas bounded by two curves.

Example 7.
Find the area between y = x2 - 2x + 2 and y = 2x - 1.
Solution
To find the x-coordinate of intersection points,
x2 - 2x + 2 = 2x - 1
x2 - 4x + 3 = 0
(x - 1)(x - 3) = 0
x = 1, 3.

fig 11.2-7

$$\text{Area\,} = \int_1^3\, [(2x-1)-(x^2-2x+2)\,]\,dx$$ $$= \int_1^3\, (-x^2 + 4x - 3)\, dx$$ $$=\bigg[-\frac{x^3}{3} + \frac{4x^2}{2} - 3x\bigg]_1^3$$ $$= 0 - (-\frac{4}{3}) = 1 \frac{1}{3}.$$

Example 8.
fig 11.2-8

Find the area between y = sin x and y = cos x for $$\frac{\pi}{4} \le x \le \frac{5\pi}{4}$$ Solution
From the figure, we see that $$sin\,x \ge cos\,x \text{when\,} \frac{\pi}{4} \le x \le \frac{5\pi}{4}.$$ $$\text{Area\,}= \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}}\, (sin\,x - cos\,x)\,dx$$ $$=\bigg[- cos\, x - sin\, x\bigg]_{\frac{\pi}{4}}^{\frac{5\pi}{4}}$$ $$=\left(-cos\, \frac{5\pi}{4}-sin\,\frac{5\pi}{4}\right)-\left(-cos\,\frac{\pi}{4} - sin\, \frac{\pi}{4}\right)$$ $$=\left(\frac{\sqrt 2}{2}+\frac{\sqrt 2}{2}\right)-\left(\frac{\sqrt 2}{2}-\frac{\sqrt 2}{2}\right)$$ $$=2\sqrt 2$$

To find the area between the graph of y = f(x) and y = g(x)
over the interval [a, b]:
Step 1 Find the intersection points of the graphs y = f(x) and g(x).
Step 2 Divide the interval [a, b] at the intersection points.
Step 3 Investigate which function is on the top at each subinterval.
Step 4 Integrate (f - g) if f is on the top, or (g - f) if g is
on the top over each subinterval.

Exercise 11.2

  1. Find the shaded areas.

  2. (a)
    fig 11.2-7

    (b)
    fig 11.2-7

    (c)
    fig 11.2-7

    (d)
    fig 11.2-7

    (e)
    fig 11.2-7

    (f)
    fig 11.2-7


  3. Find the area under each curve between the given x-values:

  4. (a) f(x) = ln x     from     x = 1     to x = e.
    (b) f(x) = 12 - 3x2     from     x = -1     to x = 2.
    (c) f(x) = xex2     from     x = 0     to x = 1.
    (d) f(x) = sin x     from     x = 0     to x = 2 .
    (e) f(x) = (1 + cos x) sin x     from     x = 0     to x = π.

  5. (a) Compute
  6. $$\int_{-1}^{1} \, x\sqrt{1-x^2}\, dx.$$ (b) Find the area enclosed between the graph of $$f(x) = x\sqrt{1-x^2}$$ and the x-axis over [-1,1].
    fig 11.2-7

  7. Find the area enclosed between the graphs of y = x3 - 3x and y = x for 0 ≤ x ≤ 2.

  8. Find the area enclosed of the graphs of ln(3x - 2) and y = x2 - 2x + 1 for 1 ≤ x ≤ 2.

  9. The shaded area is 8a unit2. Find the value of a.
  10. fig 11.2-7

11.5 Volumes Using Cross-Sections

We studied the area between a curve and x-axis, and two curves. We now consider the volume of a particular solid by integration: the method of slicing, the disc method and the washer method.

Volume by Method of Slicing

In this section, we define volumes of solids using the areas of their cross-section. A cross-section of a solid is the plane region generated by intersecting the solid with a plane.

fig 11.3-1

Suppose A(x) is the integrable cross-section area from x = a to x = b. We define the volume of the solid as
$$\text{Volume}\, = \int_a^b\, A(x)\, dx$$


Example 9.
A pyramid with the height of 4 m has a rectangle base shown in figure. Find the volume of the pyramid.
fig 11.3-2


Solution
The cross-section area at x is A(x) = x2 .
$$V = \int_0^4\, A(x)\,dx$$ $$= \int_0^4\, 2x^2\, dx$$ $$= \frac{2x^3}{3}\bigg]_0^4$$ $$= \frac{128}{3}\, \text{m}^3.$$

Volume of Revolution (Disc Method)

Consider the curve y = f(x) for axb. If the shaded part is rotated about the x-axis through 360°, a three-dimensional solid will be formed. This solid is called a solid of revolution. We can find the volume of this generated solid by definite integration.

fig 11.3-3

$$\text{Volume\,of\,revolution\,}=\pi\,\int_a^b\,[f(x)]^2\,dx.$$

Example 10.
Find the volume of revolution formed when the curve
$$\text{(a)\,\,} y=\sqrt x \, \text{for}\, 0\lt x \le 3$$ $$\text{(b)\,\,} y=x^2\, \text{for}\, 0 \lt x \lt 1$$ are rotated through 360° about the x-axis.

Solution
(a)
fig 11.3-4

fig 11.3-5

$$\text{Volume\, of\, revolution\,}= \pi\, \int_0^3 \, (\sqrt{x})^2\,dx$$ $$= \pi\, \int_0^3\, x\,dx$$ $$= \pi \frac{x^2}{2}\bigg]_0^3$$ $$= \frac{9\pi}{2}\, \text{unit}^3.$$
(b)
fig 11.3-6

fig 11.3-7

$$\text{Volume\, of\, revolution\,}= \pi\, \int_0^1 \, ({x^2})^2\,dx$$ $$= \pi\, \int_0^1\, x^4\,dx$$ $$= \pi \frac{x^5}{5}\bigg]_0^1$$ $$= \frac{\pi}{5}\, \text{unit}^3.$$
Example 11.
Find the volume of revolution formed when the curve y = sin x for π 4x ≤ π, is rotated through 360° about the x-axis.
Solution
fig 11.3-8

$$\text{Volume\, of\, revolution\,}= \pi\, \int_{\frac{\pi}{4}}^{\pi} \, sin2\,x\,dx$$ $$=\pi\, \int_{\frac{\pi}{4}}^{\pi}\, \frac{1-cos\,2x}{2}\,dx$$ $$= \pi\,\bigg[\frac{x}{2}-\frac{sin\,2x}{4}\bigg]_{\frac{\pi}{4}}^{\pi}$$ $$= \pi \left(\frac{\pi}{2}-\frac{sin\,2\pi}{4}\right)-\pi\left(\frac{\pi}{8}-\frac{sin\,\frac{\pi}{2}}{4}\right)$$ $$= \pi \left(\frac{\pi}{2}-0\right)-\left(\frac{\pi}{8}-\frac{1}{4}\right)$$ $$=\left(\frac{3\pi^2}{8}+\frac{\pi}{4}\right)\, \text{unit}^3.$$

Volume of Revolution (Washer Method)

If the region bounded by y = f(x) (on top) and y = g(x) and the limits x = a, x = b is revolved about the x-axis, then its volume of revolution is given by

$$\text{Volume of revolution \,}= \pi\,\int_a^b\, [(f(x))^2 - (g(x))^2]\,dx.$$
Example 12.
Find the volume of revolution generated by revolving the regions between y = x2 and y = √ x   about the x-axis.
Solution
fig 11.3-9

fig 11.3-10

The two graphs cut x-axis at 0 and 1. the curve y = x2 and y = √ x   is bounded above. $$V=\pi\, \int_0^1\, [(\sqrt x)^2 - (x^2)^2]\,dx$$ $$=\pi\, \int_0^1\, [x-x^4]\,dx$$ $$= \pi\, \bigg[\frac{x^2}{2}-\frac{x^5}{2}\bigg]_0^1$$ $$= \frac{3\pi}{10}\, \text{unit}^3.$$

To find the volume of revolution formed the graph of y = f(x), y = g(x)
rotated about x-axis:
Step 1 Find the intersection points of the graphs y = f(x) and g(x).
Step 2 Investigate which function is on the top.
Step 3 Integrate (f2 - g2) if f is on the top, or (g2 - f2)
if g is on the top on the interval.

Exercise 11.3
Find the volume of solid by using slicing method in Exercise 1-3.

  1. The base of the solid is the region bounded by the graphs of y = 2x, y = 4 and x = 0. The cross-section perpendicular to the x-axis are
  2. (a) rectangle of height 8.
    (b) rectangle of perimeter 10.
    fig 11.3-11

  3. The base of the solid is bounded by the graph of
  4. $$y=\sqrt x \, \text{and}\, y=\frac{x}{4}.$$ The cross-section perpendicular to the x-axis are
    (a) isosceles triangles of height 4.
    (b) semicircles with diameters running across the base of solid.
    fig 11.3-12

  5. The solid lies between the planes perpendicular to the x-axis at x = -1 and x = 1. The cross-section perpendicular to the x-axis are circular disks whose diameters run from y = -x2 + 4 and x2 + 2.

  6. By using the disc method, find the volume of revolution formed when the curve y = f(x) for axb is rotated through 360° about the x-axis.

  7. $$\text{(a)\,}\, f(x) = 3x+2;\, \, \, a=\frac{1}{2}, \, \, b=4.$$ $$\text{(b)\,}\, f(x)=\sqrt{cos\,x};\, \, \, a=0, \, \, b=\frac{\pi}{2}.$$ $$\text{(c)\,}\, f(x) = \frac{1}{x-1}; \, \, \, a=3, \, \, b=5.$$ $$\text{(d)\,}\, f(x) = sin\,x\,cos\,x; \, \, \, a=0, \, \, b=\frac{\pi}{2}.$$ $$\text{(e)\,}\, f(x)= \sqrt x\, \sqrt[4]{1+x^2}; \, \, \, a=2, \, \, b=3.$$
  8. By using the washer method, find the volume of revolution generated by revolving the regions between y = f(x) and y = g(x) for axb about the x-axis.

  9. $$\text{(a)\,}\, f(x) = x^2, \, \, g(x) = 2x;\, \, \, a=0, \, \, b=2.$$ $$\text{(b)\,}\, f(x)=tan\, x,\, \, g(x) = \frac{x}{2};\, \, \, a=0, \, \, b=\frac{\pi}{4}.$$ $$\text{(c)\,}\, f(x) = 2\sqrt x, \, \, g(x) = 2; \, \, \, a=0, \, \, b=1.$$

Contents

Chapter 1
Complex Numbers
Chapter 2
Mathematical Induction
Chapter 3
Analytical Solid Geometry
Chapter 4
Vector Algebra
Chapter 5
Permutations and Combinations
Chapter 6
Conic Sections
Chapter 7
Trigonometric Functions
Chapter 8
Logarithmic and Exponential Functions
Chapter 9
Application of Differentiation
Chapter 10
Method of Integration
Chapter 11 Application of Integrations

အခြားဖတ်စရာများ

ကွန်ပျူတာဆက်စပ်ပစ္စည်း

ခေတ်နဲ့အညီ တကိုယ်ရည်သုံးဖို့ဖြစ်ဖြစ်၊ လုပ်ငန်းအတွက်ဖြစ်ဖြစ် ကွန်ပျူတာကောင်းကောင်းတစ်လုံး ရှိထားမယ်ဆိုရင် အလုပ်လုပ်ရတာ ပျော်ဖို့ကောင်းပါတယ်။ ... ဆက်လက်ဖတ်ရှုရန်......

Latex

Latex ဆိုတာ သိပ္ပံနဲ့ သင်္ချာဆိုင်ရာစာတွေကို စာစီစာရိုက်လုပ်ရင် သုံးကြတဲ့ Typesetting တစ်မျိုးဖြစ်ပါတယ်။ ... ဆက်လက်ဖတ်ရှုရန်......