Chapter 8

Logarithmic and Exponential Functions

This chapter contains logarithmic and exponential functions as a continuous study of those of logarithms and exponents of numbers from grade 10.

8.1 Logarithmic Functions

For a number b > 0, b ≠ 1, the logarithmic function y = logb x is defined as y is a number such that x = by for x > 0.
The graphs of y = log2 x and y = log 1 2 x are as follows.
fig 8.1-1

fig 8.1-2

Domain of y = logbx: x > 0
Range: ℝ
Asymptote: y-axis (x = 0)
For b > 1, y = logbx is an increasing function that means if x1 > x2 then y1 = logbx1 > y2 = logbx2. For example, y = log2x is an increasing function.
For 0 < b < 1, y = logbx is a decreasing function that means if x1 > x2 then y1 = logb x1 < y2 = logbx2. For example, y = log 1 2 x is a decreasing function.
Since log 1 b x = - log b x,
$$y = \text{log}_b\, x \xrightarrow[\text{on} \, x\text{-axis}] {\text{reflection}} \, y = \text{log}_{\tiny{\dfrac{1}{b}}}\, x $$ as the graphs of y = log2x and y = log 1 2 x.

For b > 1, the graph of y = logbx is vertical scaling with scale factor 1 log2b of the graph y = log2x.

logb x = log2 xlog2 b so that $$y = \text{log}_2\, x \xrightarrow[\text{scale factor} \, \tiny{\dfrac{1}{\text{log}_2 b}}] {\text{vertical scaling}} \, y = \text{log}_b\, x $$
For 0 < b < 1, the graph of y = logb x is vertical scaling with scale factor 1log 12 b of the graph y = 1log 12 x .
$$log_b x = \frac{log_{\frac{1}{2}}x}{log_{\frac{1}{2}} b}$$ so that
$$y = \text{log}_{\tiny{\dfrac{1}{2}}}\, x \xrightarrow[\text{scale factor} \, \tiny{\dfrac{1}{\text{log}_{\tiny{\dfrac{1}{2}}} b}}] {\text{vertical scaling}} \, y = \text{log}_b\, x $$ Therefore all graphs of y = logb x are vertical scaling of the graph of y = log2 x or th graph of y = log 12 x. So as in y = log2 x and y = log 12 x, we have
b > 1 0 < b < 1
y = logb x < 0,     if 0 < x < 1
y = logb x = 0,     if x = 1
y = logb x > 0,     if x > 1
y = logb x > 0,     if 0 < x < 1
y = logb x = 0,     if x = 1
y = logb x < 0,     if x > 1


Example 1.
From the graph of y = log2 x, draw step-by-step transformation graph to get the graph of (a) y = log2 (x - 1) + 2
(b) y = log12 (x + 2) - 1.
Solution
$$\text{(a)}\, \, \, y = \text{log}_2 x \xrightarrow[\text{vertical translation 2 units}] {\text{horizontal translation 1 unit}} \, y = \text{log}_2\, (x - 1) + 2 $$
fig 7.1-3

$$\text{(b)} \, \, \, y = \text{log}_2\, x \xrightarrow[\text{on}\, x\text{-axis}] {\text{reflection}} \, y $$ $$ = \text{log}_{\tiny\dfrac{1}{2}}\, x \, \xrightarrow[\text{vertical translation -1 unit}] {\text{horizontal translation -2 units}} \, y $$ $$ = \text{log}_{\tiny{\dfrac{1}{2}}} (x + 2) -1$$
fig 8.1-4

Example 2
Draw the graph of y = 2 log2 x     and     y = log2 x2
Solution
The graph of y = 2 log2 x can be drawn directly or can be drawn as the vertical scaling with scale factor 2 of the graph of y = log2 x. Domain of y = log2 x2 is ℝ \ {0} and y = log2 x2 is an even function.
fig 8.1-5

Note: Asymptote y-axis (x = 0)
fig 8.1-6


Note: Asymptote y-axis (x = 0)
Note that 2 log2 x = log2 x2 for x > 0.
Exercise 8.1

1. Draw the graph of
(a)   y = log2(x - 2) + 1

(b)  y = log2 (x + 1) - 2

(c)  y = log1 2 (x + 1) + 2

(d)  y = log1 2 (x - 2) - 1

2. Draw the graph of
(a)   y = log1 2 x2

(b) y = log1 2 x

3. Draw the graph of
(a)   y = log2(-x)

(b)   y = log1 2 (-x)

4. Draw the graph of
(a)   y = log2 |x|

(b)   y = log1 2 |x|

8.2 Differentiation of Logarithmic Functions

Derivative of y = logb x

Let y = logb x.
Let δx be a small increasement in x and δy be corresponding small increasement in y.
Then
y + δy = logb (x + δx)
δy = logb (x + δx) - logb x
= logb x + δx x
δy δx = 1 δx logb x + δx x
= logb ( x + δx x ) 1 δx
= logb (1 + δx x ) 1 δx

Let δx x = t, then 1 δx = 1 xt.
δy δx = logb (1 + t)1 xt
= 1 xlogb (1 + t) 1 t

When δx → 0, so t → 0. Then
$$\small{ \frac{dy}{dx} = \lim_{\delta x \rightarrow 0} \frac{\delta y}{\delta x} }$$ $$\small{ = \frac{1}{x} \lim_{t \to 0} log_b (1 + t)^{\frac{1}{t}} }$$ $$\small{ = \frac{1}{x} log_b (\lim_{t \to 0} (1 + t)^{\frac{1}{t}}) } $$
The following table shows
$$\small{ \lim_{t\to 0}(1 + t)^{\frac{1}{t}} = ? }$$
fig 8.2-1

The above table shows that (1 + t)1t → 2.7183 as t → 0.
This limit value is denoted by e which is called the exponential number.
In fact, e is an irrational number.
Therefore,
dydx = 1x logb e
ddx logb x = 1x logb e

If u(x) > 0 is a function of x,

ddx logb u(x) = 1u(x) ⋅ logb eddx u(x)
Logarithm of x to the base e is called natural or Napierian Logarithm and denote loge x = ln x.
Since
ddx logb x = 1x logb e
ddx loge x = 1x loge e
ddx ln x = 1x
In general
ddx ln u(x) = 1u(x)dudx
Example 3.
Differentiate the following functions with respect to x
(a) log10 x3
(b) log2 x3
(c) ln x3
$$\small{ \text{(d)} \,\, \text{ln}\, \sqrt{x^2 + 5} }$$ (e) ln sin 2x
(f) ln x log10 x
$$\small{ \text{(g)} \,\, \text{ln}\, \frac{x}{\sqrt{x^2 + 2} } }$$ (h) x2 log10 x
Solution
(a) log10 x3
d dx log10 x3 = 1 x3 log10 e d dx x3
= 1 x3 log10 e . 3x2
= 1 x . x2 . 3x2 log10 e
= 3 x log10 e .


(b) log2 x3
d dx log2 x3 = 1 x3 log2 e d dx x3
= 1 x3 log2 e . 3x2
= 1 x . x2 . 3x2 log2 e
= 3 x. log2 e .

(c) ln x3
d dx ln x3 = 1 x3 d dx x3
= 1 x3 . 3x2
= 1 x . x2 . 3x2
= 3 x


$$\small{ \text{(d)} \,\, \text{ln}\, \sqrt{x^2 + 5} }$$ $$\small{ \frac{d}{dx}\, \text{ln}\, \sqrt{x^2 + 5} = \frac{1}{\sqrt{x^2 + 5}} \sdot \, \frac{d}{dx} \sqrt{x^2 + 5}}$$ $$\small{ = \frac{1}{\sqrt{x^2 + 5}} \sdot \frac{d}{dx} (x^2 + 5)^{\frac{1}{2} } } $$ $$\small{ = \frac{1}{\sqrt{x^2 + 5}} \sdot \frac{1}{2} (x^2 + 5)^{- \frac{1}{2}} \sdot \frac{d}{dx} (x^2 + 5) } $$ $$\small{ = \frac{1}{\sqrt{x^2 + 5}} \sdot \frac{1}{\cancel{2}} (x^2 + 5)^{- \frac{1}{2}} \sdot \cancel{2}x } $$ $$\small{ = \frac{1}{\sqrt{x^2 + 5}} \sdot \frac{1}{(x^2 + 5)^{\frac{1}{2} }} \sdot x } $$ $$\small{ = \frac{x}{\sqrt{x^2 + 5} \sdot \sqrt{x^2 + 5}} } $$ $$\small{ = \frac{x}{x^2 + 5} } $$
(e) ln sin 2x
d dx ln sin 2x = 1 sin 2x. d dx sin 2x
= 1 sin 2x . cos 2x d dx2x
= 1 sin 2x . 2 cos 2x
= 2 cos 2x sin 2x
= 2 cot 2x (∵ cos θ sin θ = cot θ)


(f) ln x.log10 x
d dx ln x.log10 x = ln x d dx log10 x + log10 x d dx ln x
= ln x 1 x log10 e + log10 x . 1 x


$$\small{ \text{(g)} \,\, \text{ln}\, \frac{x}{\sqrt{x^2 + 2} } }$$ $$\small{ \frac{d}{dx}\, \text{ln}\, \frac{x}{\sqrt{x^2 + 2}}= \frac{\sqrt{x^2 + 2}}{x} \sdot \frac{d}{dx} \frac{x}{\sqrt{x^2 + 2}}}$$ $$\small{ = \frac{\sqrt{x^2 + 2}}{x} \sdot \frac{\sqrt{x^2 + 2} \,\frac{dx}{dx} - x\, \frac{d}{dx}\, \sqrt{x^2 + 2}}{(\sqrt{x^2 + 2})^2} }$$ $$\small{ = \frac{\sqrt{x^2 + 2}}{x} \sdot \frac{\sqrt{x^2 + 2} \,\frac{dx}{dx} - x\, \frac{d}{dx}\, (x^2 + 2)^{\frac{1}{2}}}{(\sqrt{x^2 + 2})^2} }$$ $$\small{ = \frac{\sqrt{x^2 + 2}}{x} \sdot \frac{\sqrt{x^2 + 2} \sdot 1 - x\sdot \frac{1}{2}\, (x^2 + 2)^{- \frac{1}{2}} \sdot \frac{d}{dx} (x^2 + 2)}{x^2 + 2} }$$ $$\small{ = \frac{\sqrt{x^2 + 2}}{x} \sdot \frac{\sqrt{x^2 + 2} - x\sdot \frac{1}{\cancel{2}}\, (x^2 + 2)^{- \frac{1}{2}} \sdot \cancel{2}x}{x^2 + 2} }$$ $$\small{ = \frac{\sqrt{x^2 + 2}}{x} \sdot \frac{\sqrt{x^2 + 2} - \frac{x \sdot x}{(x^2 + 2)^{\frac{1}{2}} } } {x^2 + 2} }$$ $$\small{ = \frac{\sqrt{x^2 + 2}}{x} \sdot \frac{\sqrt{x^2 + 2} - \frac{x^2}{\sqrt{x^2 + 2} } } {x^2 + 2} }$$ $$\small{ = \frac{\sqrt{x^2 + 2}}{x} \sdot \frac{\frac{\sqrt{x^2 + 2} \,\sdot\, \sqrt{x^2 + 2} }{\sqrt{x^2 + 2}} - \frac{x^2}{\sqrt{x^2 + 2} } } {x^2 + 2} }$$ $$\small{ = \frac{\sqrt{x^2 + 2}}{x} \sdot \frac{ \frac{x^2 + 2 - x^2}{\sqrt{x^2 + 2} } } {x^2 + 2} }$$ $$\small{ = \frac{\sqrt{x^2 + 2}}{x} \sdot \frac{ \frac{2}{\sqrt{x^2 + 2} } } {x^2 + 2} }$$ $$\small{ = \frac{\cancel{\sqrt{x^2 + 2}}}{x} \sdot \frac{ 2 } {x^2 + 2 \sdot \cancel{\sqrt{x^2 + 2}}} }$$ $$\small{= \frac{2}{x(x^2 + 2)} }$$
(h) x2 log10 x
d dx x2 log10 x = log10 x. d dx x2 - x2. d dx log10 x (log10 x)2
= log10 x . 2x - x2 . 1 x . log10 e (log10 x)2
= 2x.log10 x - x . log10 e (log10 x)2


Logarithmic Differentiation: The derivative of positive functions can be found by taking the natural logarithm of both sides before differentiating as in the following examples.

Example 4.
$$ \small{ \text{find} \, \frac{dy}{dx} \, \text{if} \, y = \sqrt{(x^2 + 1) (x - 1)^2} } $$ Solution
$$ \small{ y = \sqrt{(x^2 + 1) (x - 1)^2} } $$ $$ \small{ \text{ln} \, y = \text{ln} \,\sqrt{(x^2 + 1) (x - 1)^2} } $$ $$ \small{= \frac{1}{2}\, (\text{ln}\, (x^2 + 1) (x - 1)^2) } $$ $$ \small{\frac{d}{dx} \, \text{ln}\, y = \frac{d}{dx}\, (\frac{1}{2}\, (\text{ln}\, (x^2 + 1) (x - 1)^2)) } $$ $$ \small{ \frac{1}{y} \frac{dy}{dx} = \frac{1}{2}(\frac{1}{x^2 + 1} \, \sdot 2x \, + \, \frac{1}{(x - 1)^2}\sdot 2(x - 1)) } $$ $$ \small{ = \frac{x}{x^2 + 1} + \frac{2}{x - 1} }$$ $$ \small{ \frac{dy}{dx} = y(\frac{x}{x^2 + 1} + \frac{2}{x - 1}) }$$ $$ \small{ = \sqrt{(x^2 + 1) (x - 1)^2} \, (\frac{x}{x^2 + 1} + \frac{2}{x - 1}) } $$
Example 5
Find dy dx if $$\small{ y = \frac{x\,sin \,x}{\sqrt{sec\, x}}} , \, \, \, \, 0 \lt x \lt \frac{\pi}{2}. $$ Solution
$$\small{ y = \frac{x\,sin\, x}{\sqrt{sec\, x}}} , \, \, \, \, 0 \lt x \lt \frac{\pi}{2}. $$ $$\small{ \text{ln} \, y = \text{ln} (\frac{x \, sin\, x}{\sqrt{sec\, x}}) }$$ = ln x + ln sin x - 12 ln sec x
ddx ln y = ddx(ln x + ln sin x - 12 ln sec x)
1y dydx = 1x + 1sin x ⋅ cos x - 12 1 sec x ⋅ sec x ⋅ tan x
= 1x + cot x - 12 tan x
ddx = y(1x + cot x - 12 tan x)
$$\small{ = \frac{x \, sin \, x}{\sqrt{sec \, x}} (\frac{1}{x} \, + \, cot \, x \, - \, \frac{1}{2} \, tan \, x) }$$
Exercise 8.2

1. Differentiate the following functions with respect to x.

(a) ln (2x2 + 3)

(b) ln |x|

(c) x2 log2 x

(d) sin 3x ⋅ log10 (x + 1)

$$\small{ \text{(e)}\,\, \text{ln}\, \sqrt{5x - 4}}$$
(f) ln (ln x)

2. Use logarithmic differentiation to find the derivative of y with respect to x.
$$\small{ \text{(a)}\,\, \sqrt{x(x + 1)} }$$
(b) y = x(x + 1) (x + 2)

$$\small{\text{(c)}\,\, y = \frac{x\sqrt{x^2 + 1}}{(x + 1)^{\frac{2}{3}} } }$$

8.3 Exponential Functions

A function of the form y = bx , where b > 0, b ≠ 1, is called an exponential function of x.
The graph y = 2x, y = 3x, y = 2-x, and 3-x are as follows.
fig 8.3-1

fig 8.3-2

Domain of y = bx : ℝ
Range: x > 0
Asymptote: x-axis (y = 0)

Note that y = logbx and y = bx are inverse of each other.
For b > 1, y = bx is an exponential growth function as the functions
y = 2x andy = 3x.
For 0 < b < 1, y = bx is an exponential decay function as the functions y = 2-x = (1 2)x and y = 3-x = (1 3)x

$$\small{y = b^x \xrightarrow[\text{on} \, y\text{-axis}] {\text{reflection}} \, y = b^{-x} }$$
From the graph of y = bx, the graph of y = abx , a > 0 can be obtained as
$$\small{y = b^x \xrightarrow[\text{scale factor} \,a] {\text{vertical scaling}} \, y = ab^{x} }$$
From the graph of y = abx, a > 0, the graph of y = abx - h + k can be obtained as
$$\small{y = ab^x \xrightarrow[\text{vertical translation} \, k\,\text{units}] {\text{horizontal translation}\, h\, \text{units}} \, y = ab^{x - h} + k }$$ Example 6.
Draw the graph of y = 1.5 ⋅ 2x-1 - 1 from y = 2x , and y = -2-(x+1) + 2 from y = -2-x.
Solution
$$\small{y = 2^x \xrightarrow[\text{scale factor} \,1.5] {\text{vertical scaling}} \, y }$$ $$\small{ = 1.5 \sdot 2^x \xrightarrow[\text{vertical translation -1 unit}] {\text{horizontal translation 1 unit}} \, y }$$ = 1.5 ⋅ 2x-1 - 1
fig 8.3-3

Note: Asymptote y = -1


$$\small{y = -2^{-x} \xrightarrow[\text{2 units}] {\text{vertical translation}} \, y }$$ $$\small{ = -2^{-x} + 2 \xrightarrow[\text{-1 unit}] {\text{horizontal translation}} \, y }$$ = -2-(x+1) + 2

fig 8.3-4

Note: Asymptote y = 2

Example 7.
Points (0,1) and (1, b) are on the graph of y = bx . Find the corresponding points on the graphs of y = abx and y = abx - h + k. What is the asymptote of y = abx-h + k ?
Find the range of y = abx-h + k if a > 0 and if a < 0.
Solutiion
$$\small{y = b^x \xrightarrow[\text{scale factor} \,a] {\text{vertical scaling}} \, y }$$ $$\small{ = ab^x \xrightarrow[\text{vertical translation}\, k \, \text{units}] {\text{horizontal translation}\, h\, \text{units}} \, y }$$ = abx-h + k
$$\small{(0, 1) \xrightarrow[\text{scale factor} \,a] {\text{vertical scaling}}\, (0,a) \xrightarrow[\text{vertical translation}\, k \, \text{units}] {\text{horizontal translation}}\, (h\,, a+k) }$$ $$\small{(1,b) \xrightarrow[\text{scale factor} \,a] {\text{vertical scaling}}\, (1,ab) \xrightarrow[\text{vertical translation}\, k \, \text{units}] {\text{horizontal translation}}\, (1+h\,, ab+k) }$$ Asymptote of y =bx is y = 0 (x-axis) and asymptote of y = abx is also y = 0 (x-axis).
After vertical translation k units, asymptote of y = abx-h + k is y = k.
If k > 0, than the range of y = abx-h + k is {y : y > k} that means all of y above the asymptote y = k.
If a < 0, then the range of y = abx-h + k is {y : y < k} that means all of y below the asymptote y = k.

Exercise 8.3

1. Draw the graph of
(a) y = 2 ⋅ 3x + 1 - 2

(b) y = -2x-1 + 3

2. Draw the graph of
(a) y = 2|x|

(b) y = 2|-x|

3. Find the y-intercept, asymptote and the range of
(a) y = 3ex-1 + 2

(b) y = -2e-x+1 + 3

8.4 Differentiation of Exponential Functions

Derivative of y = bx,   b > 0, b ≠ 1
y = bx,   b > 0, b ≠ 1
x = logb y

Differentiate both sides with respect to x,
1 = 1y logbedydx
dydx = y1logb e = bx logeb = bx ln b

Therefore

ddx bx = bx ln b
Since ln e = 1,
ddx ex = ex
and
ddx eu(x) = eu(x)ddx u(x)
In general
ddx bu(x) = bu(x) ⋅ ln bddx u(x)
Example 8.
Differentiate the following functions with respect to x.
(a)   e3x
(b)   e1-x2
(c)   esin x
(d)   x2e3x
(e)   e2x sin 3x
(f)   (ex + e-x)2
(g)   3e2x1 - 2x
Solution
(a)   e3x
ddx e3x = e3x ddx 3x
= e3x ⋅ 3
= 3 e3x

(b)   e1-x2
ddx e1-x2 = e1-x2 ddx (1 - x2)
= e1-x2 ⋅ (-2x)
= -2x ⋅ e1-x2

(c)   esin x
ddx esin x = esin x ddx sin x
= esin x cos x
= cos xesin x

(d)   x2e3x
ddx x2e3x = x2 ddx e3x + e3x ddx x2
= x2e3x ddx 3x + e3x ⋅ 2x
= x2e3x ⋅ 3 + e3x ⋅ 2x

(e)   e2x sin 3x
ddx e2x sin 3x = e2x ddx sin 3x + sin 3x ddx e2x
= e2x ⋅ cos 3x ddx 3x + sin 3xe2xddx 2x
= e2x ⋅ cos 3x ⋅ 3 + sin 3xe2x ⋅ 2
(f)   (ex + e-x)2
ddx (ex + e-x)2 = 2(ex + e-x). d dx (ex + e-x)
= 2 (ex + e-x).( d dx ex + d dx e-x)
= 2 (ex + e-x).(ex + e-x d dx -x )
= 2 (ex + e-x).(ex + e-x (-1) )
= 2 (ex + e-x).(ex - e-x)

(g) 3.e2x 1-2x
d dx 3.e2x 1-2x
= 3 . d dx e2x 1-2x
= 3 . (1 - 2x) d dx e2x - e2x d dx (1 - 2x) (1 - 2x)2
= 3 . (1 - 2x) e2x . d dx 2x - e2x (-2) (1 - 2x)2
= 3 . (1 - 2x) e2x . 2 + 2e2x (1 - 2x)2
= 3 . ((1 - 2x).2 + 2) e2x (1 - 2x)2
= 3 . (2 - 4x + 2) e2x (1 - 2x)2
= 3 . (4 - 4x) e2x (1 - 2x)2

Example 9.
Find dydx .
(a) y = ex ln x
(b) y = log10 ex2
(c) y = log3(sin x + ex)
(d) xey + ln (xy) = sin x

Solution
(a) y = ex ln x
dydx = ex ddx ln x + ln x ddx ex
= ex1x + ln xex

(b) y = log10 ex2 = x2 log10 e
log10 e = 0.4342944819 ဖြစ်သည်။ တနည်းအားဖြင့် constant ပါ။
y = x2 log10 e
dy dx = x2 d dx log10 e + log10 e d dx x2
= x2 . 0 + log10 e . 2x
= log10 e . 2x

(c) y = log3(sin x + ex)
dy dx = 1 (sin x + ex) .log3 e d dx (sin x + ex)
= 1 (sin x + ex) .log3 e (cos x + ex)

(d) xey + ln (xy) = sin x

Differentiate both sides with respect tox
(x d dx ey + ey dx dx) + d dx ln (xy) = d dx sin x
(x.ey. dy dx + ey.1) + 1 xy. d dx (xy) = cos x
(x.ey. dy dx + ey) + 1 xy⋅(xdy dx + ydx dx) = cos x
(x.eydy dx + ey) + 1 xy⋅(xdy dx + y⋅1) = cos x
x.eydy dx + ey + 1 xyx dy dx + 1 xy.y = cos x
x.eydy dx + ey + 1 ydy dx + 1 x = cos x
x.eydy dx + 1 y. dy dx = cos x - ey - 1 x
(x.ey + 1 y)⋅ dy dx = cos x - ey - 1 x
dy dx = cos x - ey - 1 x x.ey + 1 y

Example 10.
Differentiate y = xx,     x > 0.
Solution
y = xx
y = eln xx
y = ex ln x
dydx = ddx ex ln x
= ex ln x ddx (x ln x)
= ex ln x (x1x + ln x ⋅ 1)
= xx (1 + ln x)

Exercise 8.4

1. Differentiate the following functions with respect to x.
(a) (5 + 3x)e-2x

(b) 3xx3

(c) 2x log2 x

(d) 10x log10(x + 1)

(e) x2 + tan 3xex

(f) x ln y + exy = 2


2. Given that y = e3x sin 2x, prove that d2ydx2 - 6 dy dx + 13y = 0.

3. Use logarithmic differentiation to find the derivative of y with respect to x.
$$ \small{\text{(a)} \,\, y = (\sqrt{x})^x } $$
(b) y = xcos x

(c) y = (ln x)ln x

  • 8.1 Logarithmic Functions ကိုပြန်သွားရန်