Chapter 7

Trigonometric Functions

This chapter starts with graphs of sine functions. Then graphs of cosine, tangent and other trigonometric functions are shown. After that, the inverse of those functions and their graphs come. The essential part of this chapter is the differentiation of trigonometric functions.

7.1 Graphs of Sine Functions

Graph of the Sine Function y = sin x

fig 7.1-1

Domain: The set ℝ of all real numbers.       Range: {y| -1 ≤ y ≤ 1}
$$\scriptsize{ \text{Five key points:} \begin{cases}x\text{-intercepts:} (0,0), (\pi ,0) (2\pi , 0)\\ \text{maximum point:} (\dfrac{\pi}{2},1) \quad \text{minimum point:} (\dfrac{3\pi}{2},-1) \end{cases} } \,$$
Periodic function: If f(x) = f(x + p) where p is a positive real number, then the function F is called a periodic function. If p is the smallest such number, then p is the period of function f. The sine function y = sin x is a periodic function with period 2π, since 2π is the smallest positive real number such that sin x = sin (x + 2x). The amplitude of a periodic function is half the difference between the maximum and the minimum values. So the amplitude of the sine function y = sin x is 1 - (-1)2 = 1.

Graph of the Sine Function y = a sin bx, a > 0, b > 0

In the following example, we will see how to obtain the graph of y = a sin bx, where a > 0 and b > 0, from the graph of y = sin x.

Example 1.
From the graph of y = sin x, draw step-by-step transformation graph to get the graph of y = 2 sin π2 x.
Solution
Method 1
$$y = \text{sin}\, x \xrightarrow[\text{scale factor 2}] {\text{vertical scaling}} \, y = \text{2 sin}\, x $$
fig 7.1-2

$$y = \text{sin}\, x \, \xrightarrow[\text{scale factor 2}]{\text{vertical scaling}} \, y = \text{2\, sin} \, x \, \xrightarrow[\text{scale factor}\, \tiny{\dfrac{1}{\dfrac{\pi}{2}} = \dfrac{2}{\pi} }]{\text{horizontal scaling}} y = \text{2 sin} \dfrac{\pi}{2} x \, $$
fig 7.1-3

Method 2
$$y = \text{sin}\, x \, \xrightarrow[\text{scale factor}\, \tiny{\dfrac{1}{\dfrac{\pi}{2}} = \dfrac{2}{\pi} }]{\text{horizontal scaling}} y = \text{sin} \dfrac{\pi}{2} x $$
fig 7.1-4

$$y = \text{sin}\, x \, \xrightarrow[\text{scale factor}\, \tiny{\dfrac{1}{\dfrac{\pi}{2}} = \dfrac{2}{\pi} }]{\text{horizontal scaling}} y = \text{sin}\, \dfrac{\pi}{2} \, x = \xrightarrow[\text{scale factor 2}]{\text{vertical scaling}} \, \text{2 sin} \dfrac{\pi}{2} x \,$$
fig 7.1-5


From the graph of y = sin x, the graph of y = a sin bx, a > 0, b > 0, can be obtained as
$$y = \text{sin}\, x \, \xrightarrow[\text{scale factor }a]{\text{vertical scaling}} \, y = a\, \text{sin} \, x \, \xrightarrow[\text{scale factor}\, \tiny{\dfrac{1}{b}} ] {\text{horizontal scaling}} y = a\, \text{sin} \, bx \, \, $$
or
$$y = \text{sin}\, x \, \xrightarrow[\text{scale factor}\, \tiny{\dfrac{1}{b}} ] {\text{horizontal scaling}} \, y = \text{sin} \, bx \, \xrightarrow[\text{scale factor }a]{\text{vertical scaling}} y = a\, \text{sin} \, bx \, $$
y = sin xy = a sin bx
(x,y) → (xb, ay)
fig 7.1-6

$$\scriptsize{ \text{Five key points:} \begin{cases}x\text{-intercepts:} (0,0), (\dfrac{\pi}{b} ,0), (\dfrac{2\pi}{b} , 0)\\ \text{maximum point:} (\dfrac{\pi}{2b},a) \quad \text{minimum point:} (\dfrac{3\pi}{2b},-a) \end{cases} } \,$$


Graph of the Sine Function y = -a sin bx, a > 0, b > 0

$$y = a\, \text{sin}\, bx\, \xrightarrow{\text{Reflection on the}\, x\text{-axis}}\, y = -a\, \text{sin}\, bx \,$$
fig 7.1-7

Example 2
Draw the graph of y = 2 sin π2 x and y = -2 sin π2 x.
Solution
fig 7.1-8

Note that y = a sin (-b)x = -a sin bx, so no need to consider b < 0.


Graph of the Sine Function y = a sin b(x - h) + k

$$\small{y = a \, \text{sin}\, bx\, \xrightarrow[\text{vertical translation}\, k\, \text{units}] {\text{horizontal translation}\, h\, \text{units}} \, y}$$ $$\small{= a \, \text{sin} \, b(x - h) + k }$$

y = sin xy = a sin bxy = a sin b(x - h) + k
(x, y) → (xb, ay) → ( xb + h, ay + k)

Key points on the midline y = k
  • (0,0) → (0, 0) → (h, k)
  • (π, 0) → (πb, 0) → (πb + h, k)
  • (2π, 0) → (b, 0) → (b+h, k)

Maximum and minimum points
  • (π2,1) → (π2b, a) → (π2b+h, a+k)
  • (2, -1) → (2b, -a) → (2b+h, -a+k)
fig 7.1-9


Example 3.
Draw the graph of y = 3 sin 2 (x - 1) + 4.
Solution
Midline: y = 4,
Amplitude: 3,
Period: π
Five key points: (1, 4), (π4+1, 7), (π2+1, 4), (4+1, 1), (π+1, 4)
fig 7.1-10


Example 4.
Draw the graph of y = -3 sin π(x + 1) - 2.
Solution
Midline: y = -2,
Amplitude: 3,
Period: 2
Five key points: (-1, -2), (- 12, -5), (0, -2), (12, 1), (1, -2)
fig 7.1-11


Exercise 7.1

1. From the graph of y = sin x, draw step-by-step transformation graphs to get the graph of y = -3 sin π3 x.
2. Draw the graph of (a) y = 12 sin x
(b) y = sin 4x.
3. Draw the graph of (a) y = 2 sin π4 x
(b) y = -sin πx.
4. Draw the graph of (a) y = 2 sin π3(x-2) + 1
(b) y = -2 sin 12(x+1) + 2.
5. Show that y = a sin bx is an odd function.

7.2 Graphs of Cosine Functions

Graph of the Coine Function y = cos x

fig 7.2-1

Domain: The set ℝ of all real numbers.       Range: {y| -1 ≤ y ≤ 1}
$$\scriptsize{ \text{Five key points:} \begin{cases}x\text{-intercepts:} (\dfrac{\pi}{2},0), (\dfrac{3\pi}{2} , 0)\\ \text{maximum point:} (0,1), (2\pi, 1) \quad \text{minimum point:} (\pi,-1) \end{cases} } $$
$$\text{Note\ that\ sin} (x + \dfrac{\pi}{2}) = cos \ x ,$$ $$y = \text{sin}\, x \xrightarrow[- \dfrac{\pi}{2} \, \text{units}] {\text{horizontal translation}} \, y = \text{cos}\, x $$

Graph of the Cosine Function y = a cos bx, a > 0, b > 0

From the graph of y = cos x, the graph of y = a cos bx can be obtained as

$$\scriptsize{y = a \, \text{sin}\, bx\, \xrightarrow[\text{horizontal scaling, scale factor}\, \tiny{\dfrac{1}{b}}] {\text{vertical scaling, scale factor}\, a} \, y = a \, \text{cos}\, bx}$$ $$\scriptsize{(x,y) \rarr \, (\dfrac{x}{b}, ay) }$$

fig 7.2-2

$$\scriptsize{ \text{Five key points:} \begin{cases}x\text{-intercepts:} (\dfrac{\pi}{2b},0), (\dfrac{3\pi}{2b} , 0)\\ \text{maximum point:} (0,a), (\dfrac{2\pi}{b}, a) \quad \text{minimum point:} (\dfrac{\pi}{b},-a) \end{cases} } $$

Graph of the Cosine Function y = -a cos bx, a > 0, b > 0

$$y = a\, \text{cos}\, bx\, \xrightarrow{\text{Reflection on the}\, x\text{-axis}}\, y = -a\, \text{cos}\, bx $$

Example 5.
Draw the graphs of y = 12 cos 2x and y = - 12 cos 2x
Solution
fig 7.2-3

Note that y = a cos (-b)x = a cos bx, so no need to consider b < 0.

Graph of the Cosine Function y = a cos b(x - h) + k   , a > 0, b > 0

$$\small{y = a \, \text{cos}\, bx\, \xrightarrow[\text{vertical translation}\, k\, \text{units}] {\text{horizontal translation}\, h\, \text{units}} \, y}$$ $$\small{= a \, \text{cos} \, b(x - h) + k }$$

fig 7.2-4

y = cos xy = a cos bxy = a cos b(x - h) + k
(x, y) → (xb, ay) → ( xb + h, ay + k)

Five key points: points on the midline : (π2b + h, k), (2b + h, k)
maximum points: (h, a + k), (b + h, a+k)     minimum point: (πb + h, -a+k)

Example 6.
Draw the graph of y = 2 cos π3 (x + 1) + 3 and y = -2 cos π3 (x + 1) + 3.
Solution
Midline: y = 3,
Amplitude: 2,
Period: 6
Five key points for y = 2 cos π3 (x + 1) + 3: (-1, 5), (0.5, 3), (2, 1), (3.5, 3), (5, 5)
Five key points for y = - 2 cos π3(x + 1) + 3: (-1, 1), (0.5, 3), (2, 5), (3.5, 3), (5, 1)
fig 7.2-5



Exercise 7.2
1. From the graph of y = cos x, draw step-by-step transformation graphs to get the graph of y = -3 cos π2 x.

2. Draw the graph of (a) y = 12 cos x
(b) y = cos 4x.

3. Draw the graph of (a) y = 2 cos π4 x
(b) y = -sin πx.

4. Draw the graph of (a) y = 2 cos π(x-2) + 1
(b) y = -2 cos 12(x+1) + 2.

5. Show that y = cos bx is an even function.

7.3 Graphs of Other Trigonometric Functions

Graph of y = 10 x and y = cot x

fig 7.3-1

Domain: x ≠ ± π2, ± 2, ...
Range: ℝ
Period: π
x-intercepts: x = 0, ±&pi, ±2π, ...
Asymptotes: x = ±π2, ± 2, ...
fig 7.3-2

Domain: x ≠ 0, ±π, ±2π, ...
Range: ℝ Period: π
x-intercepts: x = ±π2, ± 2, ...
Asymptotes: x = 0, ±π, ±2π, ...
Example 7.
Draw the graphs of y = a tan bx and y = a cot bx for a, b > 0.

Solution
y = tan xy = a tan bx,
(x, y) → (x b, ay)
fig 7.3-3

y = cot xy = a cot bx
(x, y) → (x b, ay)
fig 7.3-4

Graph of y = sec x   and y = csc x

fig 7.3-5

Domain: x ≠ ± π2, ± 2, ...
Range: y ≤ -1 or y ≥ 1
Period: 2π
x-intercepts: x = 0, ±π, ±2π, ...
Asymptotes: x = ±π2, ± 2, ...
fig 7.3-6

Domain: x ≠ 0, ±π, ±2π, ...
Range: y ≤ -1 or y ≥ 1
Period: 2π
x-intercepts: x = ±π2, ± 2, ...
Asymptotes: x = 0, ±π, ±2π, ...
Note that transform y = sec x to y = a sec bx and y = csc x to y = a csc bx with (x, y) → (xb, ay), we get the graph of y = a sec bx and y = a csc bx.

Exercise 7.3
1. Draw the graph of (a) y = 12 tan πx
(b) y = 2 tan 12 x.


2. Draw the graph of (a) y = 2 cot π3 x
(b) y = 3 cot 2x.

3. Draw the graph of (a) y = 2 sec πx

(b) y = 2 csc 12 x.

4. Show that y = a tan bx , y = a cot bx, and y = a csc bx are odd functions.

5. Show that y = a sec bx is an even function.

7.4 Inverse Trigonometric Functions

Trigonometric functions are not one-to-one functions. So we need to restrict the domain of each function to be a one-to-one function to get the inverse trigonometric functions. The following graphs shows that y = sin x, y = cos x, and y = tan x are one-to-one in the restricted domains.

In these restricted domains, we can define the inverse functions y = sin-1x, y = cos-1x and y = tan-1x.
fig 7.4-1

fig 7.4-2

fig 7.4-3

  • y = sin-1x if sin y = x for -1 ≤ x ≤ 1, - π2yπ2
  • y = cos-1 x if cos y = x for -1 ≤ x ≤ 1, 0 ≤ y ≤ π
  • y = tan-1 x if tan y = x for x ∈ R
fig 7.4-4

fig 7.4-5

fig 7.4-6

We can define the other trigonometric functions in the same manner.
  • y = cot -1x if cot y = x for x ∈ R, 0 < y < π
  • y = sec-1 x if sec y = x for |x| ≥ 1, 0 ≤ y ≤ π, yπ2
  • y = csc-1 x if csc y = x for |x| ≥ 1, - π2yπ2, y ≠ 0


Example 8.
Evaluate (a) sin-1 12
(b) cos-1 - (12)
$$\small{\text{(c) tan}^{-1} (-\sqrt{3})}$$ (d) sin-1 (sin 6 ).
Solution
(a) Since sin π6 = 12 and - π2π6π2,
we have sin-1 12 = π6.

(b) Since cos 3 = - 12 and
0 ≤ 3 ≤ π, we have
cos-1 (- 12) = 3.

(c) Since tan(- π3) = - √ 3 and
- π2 ≤ - π3π2, we have
tan-1 (- √ 3 ) = - π3.

(d) sin-1(sin 6) = sin-1 (12) = π6.

From y = sin-1 x if sin y = x, we have sin(sin-1 x) = x for the domain -1 ≤ x ≤ 1 of y = sin-1 x, but from Example 8(d) one can see that
sin-1(sin x) = x is not true in general.
Since sin(-sin-1x) = -sin(sin-1x) = -x, we have
sin-1(-x) = -sin-1x

so y = sin-1x is an odd function.

From y = cos-1x if cos y = x, we have cos(cos-1x) = x for the domain -1 ≤ x ≤ 1 of y = cos-1x. Since cos(π - cos-1x) = - cos(cos-1x) = -x,
π - cos-1x = cos-1(-x)
or
cos-1x + cos-1(-x) = π

Exercise 7.4

1. Evaluate (a) csc(sin-10.3)
(b) cot(tan-1 5)
(c) sec(cos-1(-0.75)).

2. Evaluate (a) sin-1 3 2
(b) cos-1 2 2
(c) tan-1 3 3

3. Evaluate (a) sin(cos-1 3 2 )
(b) tan(sin-1 3 2)
(c) csc(tan-1(- 3 3 ))

4. Evaluate (a) sin-1(sin 3)
(b) cos-1(cos(- 12))
(c) tan-1(tan(- √ 3 ))

5. Prove that sin-1 x + cos-1 x = π2

7.5 Differentiation of Trigonometric Functions

Before we study the differentiation of trigonometric functions, we first evaluate an important limit, $$\small{\lim_{x\to 0} \frac{sin\, x}{x}.} $$

Consider the unit circle in the following figure with radii OA and OB with OA = OB = 1 and ∠AOB = x radians.
Obviously, BD < arc AB < AC. In right ▵OBD, BD = OB sin x = sin x.

fig 7.5-1

In right ∆OAC, AC = OA tan x = tan x.
Length of arc AB = OBx = x, we have
sin x < x < tan x
sin xsin x < xsin x < tan xsin x
1 < xsin x < 1cos x
1 > sin xx > cos x

When x → 0, cos x → 1.
$$\small{ \text{Since}\, \lim_{x\to 0}1 = 1 \, \text{and} \, \lim_{x\to0}\, cos \, x\, = \, 1, } $$ $$\small{ \lim_{x\to0} \frac{sin \, x}{x} = 1 } $$ Derivative of sin x
Let y = sin x.
y + δy = sin(x + δx)
∴ δy = sin(x + δx) - sin x
= 2 cos(x + δx2) ⋅ sin δx2       (sin α - sin β = 2cos α + β2 ⋅ sin α - β2)
$$\small{ \frac{dy}{dx} = \lim_{\delta x\to0} \frac{\delta y}{\delta x} } $$ $$\small{ = \lim_{\delta x\to0} \frac{2 \text{cos}(x + \frac{\delta x}{2})\, \sdot\, \text{sin} \frac{\delta x}{2}} {\delta x} }$$ $$\small{= \lim_{\delta x\to0} \text{cos}(x + \frac{\delta x}{2})\, \sdot\, \lim_{\delta x\to0} \frac{\text{sin} \frac{\delta x}{2}}{\frac{\delta x}{2}} }$$ = cos x × 1       (when δx→ 0, δx2 → 0)
ddx sin x = cos x
In general,
ddx sin u(x) = cos u(x) ⋅ ddx u(x).

Derivative of cos x
Since cos x = sin(π2 + x)
ddx cos x = ddx sin(π2 + x)
= cos(π2 + x) ⋅ ddx(π2 + x)
= - sin x × 1       (∵ cos(π2 + x) = - sin x)
ddx cos x = - sin x
In general,
ddx cos u(x) = - sin u(x) ⋅ ddx u(x).

Derivative of tan x
Since tan x = sin xcos x
ddx tan x = ddx sin xcos x
= cos x ddx sin x - sin x ddx cos x cos2 x
= cos x ⋅ cos x - sin x ⋅ (- sin x)cos2x       (quotient formula)
cos2 x + sin2 xcos2 x
= 1 cos2 x       (cos2 x + sin2 x = 1)
= sec2 x       (sec x = 1 cos x)
ddx tan x = sec2 x
In general,
ddx tan u(x) = sec2 u(x) ⋅ ddx u(x).
Similarly, we can easily find the formulas for the derivatives of cot x, sec x and csc x.

Formulas for derivatives of trigonometric functions
1 ddx sin (x) = cos x , ddx sin u(x) = cos u(x). ddx u(x).
2 ddx cos (x) = -sin x , ddx cos u(x) = -sin u(x). ddx u(x).
3 ddx tan (x) = sec2 x , ddx tan u(x) = sec2 u(x). ddx u(x).
4 ddx cot (x) = -cosec2 x , ddx cot u(x) = -cosec2 u(x). ddx u(x).
5 ddx sec (x) = sec x. tan x , ddx sec u(x) = sec u(x). tan u(x). ddx u(x).
  6   ddx csc (x) = -csc x. cot x , ddx csc u(x) = -csc u(x). cot u(x). ddx u(x).
Example 9.
Differentiate the following functions with respect to x.
(a) sin 5x
(b) cos (7x2 - 2)
(c) tan(6x + 7)
(d) 5 sec(3x + 1)
(e) cot(1 - 2x)3
(f) -2 csc 3x
Solution
(a) ddx sin 5x = cos 5xddx 5x
= cos 5x ⋅ 5 = 5 cos 5x

(b) ddx cos (7x2 - 2) = - sin(7x2 - 2) ⋅ ddx (7x2 - 2)
= - sin (7x2 - 2) ⋅ 14x

(c) ddx tan(6x + 7) = sec2(6x + 7) ⋅ ddx (6x + 7)
= sec2 (6x + 7) ⋅ 6

(d) ddx 5 sec(3x + 1) = 5⋅ sec(3x + 1) ⋅ tan(3x + 1) ⋅ ddx (3x + 1)
= 5⋅ sec(3x + 1) ⋅ tan(3x + 1) ⋅ 3
= 15 ⋅ sec(3x + 1) ⋅ tan(3x + 1)

(e) ddx cot(1 - 2x)3 = 13ddx cot(1 - 2x)
= 13 ⋅ - csc2(1 - 2x) ⋅ ddx (1 - 2x)
= - 13 ⋅ csc2(1 - 2x) ⋅ (-2)
= 23 ⋅ csc2(1 - 2x)

(f) ddx (-2 csc 3x) = -2 (-csc 3x ⋅ cot 3x)ddx 3x
= 2 csc 3x ⋅ cot 3x ⋅ 3
= 6 csc 3x ⋅ cot 3x

Example 10.
Find dydx.
(a) y = sin2 x
(b) y = cos √ x
(c) y = tan2 (x2)
(d) y = sin 2x - x cos x
(e) y = sin x ⋅ cos2 x
(f) y = x tan x
(g) y = √ x + 10x

Solution
(a) y = sin2 x
dydx = ddx sin2x
= 2 sin x ddx sin x
= 2 sin x cos x

(b) y = cos √ x
dydx = ddx cos √ x
= - sin √ x ddx x12
= - sin √ x 12 x ( 12 - 1)
= - sin √ x 12 x( - 12)

(c) y = tan2 (x2)
dydx = 2 tan (x2) ddx tan (x2)
= 2 tan (x2).sec2 (x2) dydx x2
= 2 tan (x2).sec2 (x2).2x

(d) y = sin 2x - x cos x
dydx = cos 2x. ddx 2x - [x.ddx cos x + cos x dxdx ]
= 2 cos 2x - [x (-sin x) + cos x.1]
= 2 cos 2x + x sin x - cos x
(e) y = sin x.cos2 x
dydx = sin x. ddx (cos2 x) + cos2 x. ddx (sin x)
= sin x.2 cos x. ddx (cos x) + cos2 x.cos x
= sin x. 2 cos x.(-sin x) + cos2 x. cos x
= -2 sin2 x.cos x + cos3 x
(f) y = x3 tan x
dydx = tan x. dxdx - x. ddx tan x (tan x)2
= tan x.1 - x sec2 x tan2 x
= tan x - x sec2 x tan2 x

(g) y = √ x + sin x = (x + sin x)1/2
dydx = 12 (x + sin x)-1/2 . ddx (x + sin x)
= 12 (x + sin x)-1/2 . (1 + cos x)
= 1 + cos x 2 √ x + sin x

Example 11.
Given that x + sin y = cos(xy) , find dydx .
Solution
x + sin y = cos(xy) , find dydx .
Differentiate with respect to x,
1 + cos ydydx = -sin xyddx (xy)
1 + cos y. dydx = - sin (xy). [x. dydx + y]
1 + cos y. dydx = -x sin (xy). dydx - y sin (xy)
x sin (xy). dydx + cos y. dydx = -y sin xy - 1
(x sin (xy) + cos y). dydx = -y sin xy -1
dydx = -y sin xy -1 x sin (xy) + cos y
dydx = - 1 + y sin xy cos y + x sin (xy)

Example 12.
Given that y = x sin x, find d2y dx2.
Solution
y = x sin x
dydx = x ddx sin x + sin x.
dxdx = x.cos x + sin x
d2y dx2 = (x⋅ddx cos x + cos x ⋅ dxdx ) + ddx sin x
= x (-sin x) + cos x + cos x
= 2 cos x - x sin x

Exercise 7.5
1. Differentiate the following function with respect to x.
(a)   sin (2x + 3),
(b)  cos 3x
(c)  x3 cos 2x ,
(d)  cos 7x + sin 3x
(e)   sin x.cos 2x,
(f)   cos2 (5x)
(g)  tan3 x ,
(h)  sin (cos x)
(i)  sin x 1 + tan x ,
(j)  √ sin x + cos x

2. Find dydx.
(a) y = sin (1 - x2) ,
(b) y = 2 π x + 2 cos π x.
(c) y = sin2 x . cos 3x ,
(d) y = x2 sin( 1x)
(e) 3x2 + 2 sin y = y2 ,
(f) sin x . cos y = 2y.

3. Given that y = cos2 x, prove that d2y dx2 + 4y = 2.

4. Given that y = 13 cos3x - cos x, prove that dydx = sin3x.

  • 7.1 Graphs of Sine Functions ကိုပြန်သွားရန်